If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2r^2+15r+8=0
a = 2; b = 15; c = +8;
Δ = b2-4ac
Δ = 152-4·2·8
Δ = 161
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{161}}{2*2}=\frac{-15-\sqrt{161}}{4} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{161}}{2*2}=\frac{-15+\sqrt{161}}{4} $
| 80=4m+5(m+7) | | 6m+3(2m-13)=45 | | (3x^2-2x-3)^2=16 | | 3x2+7x=2 | | 3(4r+5)–2(3r+4)= | | X+285=20x | | 2(4y-1)+3(y+2)=1 | | 11n-14=-6 | | 70=3m+5(3m-4) | | 2x+1043=3782-x | | 7m+3(5m-11)=187 | | 1/4÷80=x | | 7m+2(m-4)=55 | | 4x+8/2=-x=2 | | 8x-10=5x+23 | | 2x+4÷6-2=4 | | 4m+4(m-9)=60 | | 3b+8=-7b= | | 7s+43=162 | | 1.5+2.6=1.9x+2.2 | | 195=2m+5(4m-5) | | 4y+12=180 | | 2n+10=7n | | 6=2x+10-10x | | 9t-7=-5 | | 5x-4=5+2x | | 2(n-2)-(3+5n)=-4n | | 1/5(z-25)=2/5(z+30) | | w+40=6w | | 5=3y-9 | | 20-6x=-2+44 | | 52-(2c+4)=4(c+5)=5 |